Enhanced skeleton visualization for view invariant human action recognition

نویسندگان

  • Mengyuan Liu
  • Hong Liu
  • Chen Chen
چکیده

Human action recognition based on skeletons has wide applications in human–computer interaction and intelligent surveillance. However, view variations and noisy data bring challenges to this task. What’s more, it remains a problem to effectively represent spatio-temporal skeleton sequences. To solve these problems in one goal, this work presents an enhanced skeleton visualization method for view invariant human action recognition. Our method consists of three stages. First, a sequence-based view invariant transform is developed to eliminate the effect of view variations on spatio-temporal locations of skeleton joints. Second, the transformed skeletons are visualized as a series of color images, which implicitly encode the spatio-temporal information of skeleton joints. Furthermore, visual and motion enhancement methods are applied on color images to enhance their local patterns. Third, a convolutional neural networks-based model is adopted to extract robust and discriminative features from color images. The final action class scores are generated by decision level fusion of deep features. Extensive experiments on four challenging datasets consistently demonstrate the superiority of our method. © 2017 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward a Real Time View-invariant 3D Action Recognition

In this paper we propose a novel human action recognition method, robust to viewpoint variation, which combines skeletonand depth-based action recognition approaches. For this matter, we first build several base classifiers, to independently predict the action performed by a subject. Then, two efficient combination strategies, that take into account skeleton accuracy and human body orientation,...

متن کامل

Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition

3D action recognition – analysis of human actions based on 3D skeleton data – becomes popular recently due to its succinctness, robustness, and view-invariant representation. Recent attempts on this problem suggested to develop RNN-based learning methods to model the contextual dependency in the temporal domain. In this paper, we extend this idea to spatio-temporal domains to analyze the hidden...

متن کامل

Learning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition

We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes and camera viewpoints. Learning such universal models requires training images where all factors are varied for every human pose. Capturing such data is prohibitively expensive. Therefore, we develop a framework for synthesizing the trai...

متن کامل

Improved Discriminative Model for View- Invariant Human Action Recognition

Recognizing human actions play an important role in applications like video surveillance. The recent past has witnessed an increasing research on view-invariant action recognition. Huang et al. proposed a framework based on discriminative model for human action recognition. This model uses STIP (Space – Time Interest Point) to extract motion features and view invariants. Then a discriminative m...

متن کامل

A real-time system for motion retrieval and interpretation

This paper proposes a new examplar-based method for real-time human motion recognition using Motion Capture (MoCap) data. We have formalized streamed recognizable actions, coming from an online MoCap engine, into a motion graph that is similar to an animation motion graph. This graph is used as an automaton to recognize known actions as well as to add new ones. We have defined and used a spatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2017