Enhanced skeleton visualization for view invariant human action recognition
نویسندگان
چکیده
Human action recognition based on skeletons has wide applications in human–computer interaction and intelligent surveillance. However, view variations and noisy data bring challenges to this task. What’s more, it remains a problem to effectively represent spatio-temporal skeleton sequences. To solve these problems in one goal, this work presents an enhanced skeleton visualization method for view invariant human action recognition. Our method consists of three stages. First, a sequence-based view invariant transform is developed to eliminate the effect of view variations on spatio-temporal locations of skeleton joints. Second, the transformed skeletons are visualized as a series of color images, which implicitly encode the spatio-temporal information of skeleton joints. Furthermore, visual and motion enhancement methods are applied on color images to enhance their local patterns. Third, a convolutional neural networks-based model is adopted to extract robust and discriminative features from color images. The final action class scores are generated by decision level fusion of deep features. Extensive experiments on four challenging datasets consistently demonstrate the superiority of our method. © 2017 Elsevier Ltd. All rights reserved.
منابع مشابه
Toward a Real Time View-invariant 3D Action Recognition
In this paper we propose a novel human action recognition method, robust to viewpoint variation, which combines skeletonand depth-based action recognition approaches. For this matter, we first build several base classifiers, to independently predict the action performed by a subject. Then, two efficient combination strategies, that take into account skeleton accuracy and human body orientation,...
متن کاملSpatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition
3D action recognition – analysis of human actions based on 3D skeleton data – becomes popular recently due to its succinctness, robustness, and view-invariant representation. Recent attempts on this problem suggested to develop RNN-based learning methods to model the contextual dependency in the temporal domain. In this paper, we extend this idea to spatio-temporal domains to analyze the hidden...
متن کاملLearning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition
We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes and camera viewpoints. Learning such universal models requires training images where all factors are varied for every human pose. Capturing such data is prohibitively expensive. Therefore, we develop a framework for synthesizing the trai...
متن کاملImproved Discriminative Model for View- Invariant Human Action Recognition
Recognizing human actions play an important role in applications like video surveillance. The recent past has witnessed an increasing research on view-invariant action recognition. Huang et al. proposed a framework based on discriminative model for human action recognition. This model uses STIP (Space – Time Interest Point) to extract motion features and view invariants. Then a discriminative m...
متن کاملA real-time system for motion retrieval and interpretation
This paper proposes a new examplar-based method for real-time human motion recognition using Motion Capture (MoCap) data. We have formalized streamed recognizable actions, coming from an online MoCap engine, into a motion graph that is similar to an animation motion graph. This graph is used as an automaton to recognize known actions as well as to add new ones. We have defined and used a spatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 68 شماره
صفحات -
تاریخ انتشار 2017